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Überblick 
Ameisenalgorithmen halten seit ihrer Vorstellung im Jahre 1991 zunehmend Einzug ins Schrifttum 
des Operations Research. Dies liegt nicht allein an der originellen Adaption ihres natürlichen 
Vorbilds, sondern vor allem an den viel versprechenden Ergebnissen, welche die Meta-Heuristik 
in unterschiedlichen Problemstellungen der kombinatorischen Optimierung liefert. In diesem 
Artikel soll die Übertragung der Futtersuche der Ameisen auf die Optimierung dargestellt werden. 
Beginnend mit dem biologischen Vorbild in Abschnitt 1 wird anschließend in Abschnitt 2 eine 
formale Beschreibung der Ameisenalgorithmen vorgenommen, um im abschließenden Abschnitt 3 
Hinweise für die Anpassung an konkrete Optimierungsprobleme zu liefern. 

1. Die Idee 
Ameisenalgorithmen beziehen sowohl ihren Namen als auch die sich dahinter verbergende 

Idee der Lösungssuche aus ihrer Analogie zur Natur. So ließ sich der italienische 

Mathematiker Marco Dorigo von der Futtersuche der Ameisen inspirieren, als er 1991 den 

Ablauf in Ameisenkolonien auf die Lösungssuche in kombinatorischen 

Optimierungsproblemen übertrug, vgl. Schmundt (2000).1  

Ameisen orientieren sich bei ihrer Futtersuche mittels eines chemischen Sekrets namens 

Pheromon, welches sie während ihrer Fortbewegung laufend aus einer Drüse am hinteren Teil 

ihres Körpers auf den Boden absondern, vgl. Bonabeau und Meyer (2001). Nachfolgende 

Ameisen wählen, vor die Entscheidung gestellt, in welcher Richtung sie ihren Weg fortsetzen 

sollen, mit einer höheren Wahrscheinlichkeit den Weg, auf dem bereits mehr Pheromon 

hinterlassen wurde, vgl. Bonabeau et al. (2000). Das Pheromon nimmt damit die Rolle einer 

Art kollektiven Gedächtnisses der Kolonie ein, welches die vergangenen Wegentscheidungen 

speichert.  

Beobachtungen aus der Natur zeigen, dass Ameisen ihre Straßen meist auf direktem Weg 

zwischen Nest und Futterquelle errichten. Doch wie ermöglicht nun das Pheromon der 

Kolonie als Ganzem, einen kürzesten Weg zu finden, wozu eine einzelne Ameise mittels ihrer 

individuellen Fähigkeiten allein nur zufällig in der Lage wäre. Ameisen machen es sich zu 

                                                 
1 Unter den ersten Veröffentlichungen finden sich: Colorni et al. (1991), Dorigo et al. (1991) und Dorigo (1992). 
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Nutze, dass kürzere Wege schneller durchlaufen werden können und dementsprechend ihre 

Markierung schneller erhalten. Pro Zeiteinheit können somit mehr Ameisen den kürzeren 

Weg durchlaufen als einen längeren. Ein Mehr an Ameisen bedeutet aber auch, dass 

Nachfolger vor die Wahl gestellt mit höherer Wahrscheinlichkeit den stärker belaufenen und 

markierten Weg wählen. Dadurch verstärkt sich die Anziehungskraft des kürzeren Weges im 

Zeitablauf immer weiter, bis eine Ameisenstraße auf der annähernd direkten Verbindung 

zwischen Nest und Nahrung entstanden ist. 

Diesen Ablauf soll die folgende schematische Wegsuche aus Abbildung 1 verdeutlichen, 

deren Ablauf von Biologen mit Experimenten ähnlichen Aufbaus nachgewiesen wurde, siehe 

hierzu Pasteels et al. (1987), Goss et al. (1989), Deneubourg et al. (1990).  
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Abb. 1: Schematischer Ablauf der Futtersuche von Ameisen 

Angenommen pro Zeiteinheit starten jeweils zwei Ameisen vom Nest aus, um Nahrung zu 

sammeln. Zwischen Ameisenhaufen und Futterquelle befindet sich ein Hindernis, dessen 

Umlaufen die Ameisen auf dem längeren Weg eine Zeiteinheit kostet und auf dem kürzeren 

lediglich eine halbe. Da die Ameisen die Güte der Wege von ihrer Position aus nicht 

überschauen können und zu Beginn noch keine Ameise die Wege mit Pheromon 

gekennzeichnet hat, sei unterstellt, dass ihre Zufallsauswahl die eine Ameise den längeren und 

die andere den kürzeren Weg beschreiten lässt. Ist eine Zeiteinheit vergangen und zwei 

weitere Ameisen sind vor die Wegentscheidung gestellt, so hat die Ameise, welche den 

längeren Weg gewählt hat, gerade die Futterquelle erreicht, mithin ihren Weg mit einer 

Pheromoneinheit markiert. Die andere Ameise hat aber in der einen Zeiteinheit schon den 

Weg zurück ins Nest zurückgelegt und somit den Weg doppelt markiert. Die nachfolgenden 

Ameisen werden nun mit einer höheren Wahrscheinlichkeit den kürzeren Weg wählen, da die 

größere Pheromonmenge ihre Auswahlentscheidung in diese Richtung beeinflusst. So bildet 

sich schon nach kurzer Zeit eine stärkere Präferenz für den kürzeren Weg heraus, die weiter 

verstärkt wird, je mehr Ameisen erfolgreich den kürzeren Weg beschritten haben. 
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Nun lässt sowohl die Natur als auch ein kombinatorisches Optimierungsproblem den 

einzelnen Ameisen wesentlich mehr Freiheitsgrade bei ihrer Wegentscheidung als in dem 

Beispiel, so dass die Konvergenz zum kürzesten Weg bzw. der besten Lösung mehr Ameisen 

und eine längere Zeit beansprucht; der Mechanismus dahinter bleibt aber der beschriebene. 

2. Übertragung des natürlichen Vorbilds auf einen 
Algorithmus 

Artifizielle Ameisen bilden das Verhalten ihrer natürlichen Vorbilder nach, indem sie die 

Variablen einer gesuchten Lösung sukzessive analog einer Wegsuche festlegen. Dabei 

machen sie die Wahlentscheidung über den Wert der aktuell betrachteten Lösungsvariablen 

abhängig von der Höhe der Pheromonvariablen, welche die Güte der vorangegangenen 

Wahlentscheidungen zwischen der Lösungsvariablen und ihrer möglichen Ausprägungen an 

dieser Stelle des Festlegungsprozesses kennzeichnet.  

Die künstlichen Ameisen orientieren sich aber nicht allein am Pheromon. Zusätzlich wird 

ihnen eine Art Sehfähigkeit attestiert. Bei ihrer Wegentscheidung ziehen sie nicht nur die 

Pheromonmenge hinzu, sondern orientieren sich zusätzlich an einer heuristischen 

Information, einer Prioritätsregel. Übertragen auf die Wegsuche betont eine Prioritätsregel 

etwa die nächstgelegene Weggabelung (Kante in einem Netzwerk), vgl. Maniezzo und 

Carbonaro (1999).  

Nach der Fixierung einer Variablen kennzeichnen auch die artifiziellen Ameisen ihre 

getroffene Wegentscheidung für die Nachfolger mit Pheromon. Dies geschieht, indem in einer 

Matrix eine Fließkommazahl, die den Pheromonwert an der Verbindung zwischen der 

festgelegten Variablen und ihrer gewählten Ausprägung aus dem Wertebereich repräsentiert, 

proportional zur der Güte der Auswahl manipuliert wird.  

Entsprechend dieser Skizzierung der Übertragung des natürlichen Vorbilds auf einen 

Algorithmus gilt es, folgende drei Hauptelemente näher zu beschreiben: 

a) Den Ablauf der sukzessiven Festlegung der Variablen analog zur Wegsuche der 

Ameisen, 

b) die Regel nach der die Fixierung einer Variablen aus ihrem Wertebereich 

entsprechend einer Wegentscheidung erfolgt, und 

c) die Markierung der erzeugten Lösungen analog der Pheromonablage. 
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Formal lässt sich die Wegsuche folgendermaßen darstellen:2 Gesucht wird eine Lösung x mit 

xi (i = 1,…,n) Variablen. Da Ameisenalgorithmen für kombinatorische Optimierungsprobleme 

eingesetzt werden, kann jede dieser Variablen eine endliche Anzahl an Ausprägungen aus 

ihrem Wertebereich annehmen, dargestellt durch die Menge Ji. Die Wegsuche der artifiziellen 

Ameisen erfolgt nun durch den Lösungsraum, indem sukzessive die Variablen xi aus ihren 

Wertebereich Ji festgelegt werden. Zur Fixierung einer Variablen analog zu einer einzelnen 

Wegentscheidung wird jeder möglichen Ausprägung der Variablen eine 

Auswahlwahrscheinlichkeit P(xij) zugeordnet, die sich aus dem Pheromonwert und der 

Prioritätsregel berechnet, siehe Formel (1.1). Anschließend sorgt eine Monte-Carlo-Auswahl 

für eine zufallsgestützte Wegauswahl proportional zur Auswahlwahrscheinlichkeit. 
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Für die Festlegung einer Variablen xi aus dem zulässigen Wertebereich j œ Ji werden das 

Pheromon tij und der Wert einer Prioritätsregel nij der betrachten Wegentscheidung mit den 

Ausprägungen aller möglichen Alternativen ins Verhältnis gesetzt. Dabei sind a und b 

Gewichtungsfaktoren, welche den Einfluss von Pheromon bzw. heuristischer Information auf 

die Wegentscheidung steuern können. Anhand der ermittelten Auswahlwahrscheinlichkeiten 

kann anschließend eine Monte-Carlo-Auswahl über die Festlegung der betrachten Variablen 

entscheiden; siehe Abb. 2. 
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Abb. 2: Schematische Darstellung der Monte-Carlo Auswahl durch den Ameisenalgorithmus 

Zahlreiche Erweiterungen hat die Grundform der Auswahlentscheidung seit ihrem Bestehen 

erfahren. Eine der wichtigsten Erweiterungen, die auch ACO3 genannt wird, vgl. Dorigo et al. 

(1999), wendet im Wechsel neben der Monte-Carlo-Auswahl auch eine Regel an, welche 

                                                 
2 Eine weiterführende formale Betrachtung losgelöst von einem konkreten Optimierungsproblem findet sich bei 

Birattari et al. (2002). 
3 Die Abkürzung ACO steht für Ant Colony Optimization. 
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immer diejenige Auswahlentscheidung mit dem maximalen Produkt aus Pheromon und 

heuristischer Information trifft. Die Steuerung, welche der beiden Auswahlregeln angewendet 

wird erfolgt über den Vergleich einer gezogenen Zufallszahl 0≤ rnd ≤1 mit einem 

vorzugebendem Schwellenwert 0≤Q≤1, wie es Formel (1.2) nahe legt. 

=)( ijxP

" i=1,…,n; j œ J i

" i=1,…,n; j =
iJk∈

maxarg

∑ ∈
⋅

⋅

iJk ikik

ijij
βα

βα

ντ
ντ

wenn rnd > Q :

wenn rnd ≤ Q :

1

0 sonst

[            ]βα ντ ikik ⋅

 

(1.2)

Durch diese modifizierte Auswahlregel kann die Suche in der Nachbarschaft von der bis dato 

besten gefundenen Lösung verstärkt werden. 

Neben der Wegsuche ist die Rückmeldung des Erfolgs via Pheromon das wichtigste Element 

eines Ameisenalgorithmus. Die Pheromonablage erfolgt allerdings etwas anders als bei ihren 

lebendigen Vorbildern. Während dort kürzere Wege in geringerer Zeit zurückgelegt werden 

und dementsprechend ihre Kennzeichnung schneller erhalten als längere Wege, ist dies am 

Computer durch dessen diskrete Natur schwierig abzubilden. Daher erfolgt die Ablage des 

künstlichen Pheromons dergestalt, dass zunächst alle Ameisen einer Iteration ihren Weg 

bestimmen. Anschließend wird für jede Ameise die Güte der gefundenen Lösung bestimmt 

und erst jetzt ex post jede in der Gesamtlösung enthaltene Teilentscheidung proportional zur 

Lösungsgüte mit Pheromon gekennzeichnet. Sind alle n Variablen festgelegt, so liegt eine 

Lösung x für das Ausgangsproblem vor, für die wiederum der Zielfunktionswert F(x) 

errechnet werden kann. Alle Elemente (i,j) des Lösungsraumes, die Teil der Lösung x sind, 

werden nun in der Pheromonmatrix t entsprechend des Zielfunktionswertes der Lösung 

gekennzeichnet, siehe Formel (1.3) für ein Minimierungsproblem. 
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Verwitterung Pheromonablage  

(1.3)

Die Betonung guter Lösungen kann weiter erhöht werden, indem nicht alle Ameisen für die 

Pheromonablage berechtigt werden. Abweichend von der Natur kann etwa nur diejenige 

Ameise mit dem besten Zielfunktionswert (xmax) für die Pheromonablage ausgewählt werden, 

vgl. Dorigo et al. (1999). Zusätzlich ist in Formel (1.3) ein ebenfalls an die Natur angelehnter 

Verwitterungsfaktor 0<r<1 integriert. Wie die Witterungseinflüsse auf eine reale 
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Pheromonspur einwirken, schwächt dieser Faktor auch die virtuelle Spur vergangener 

Iterationen. Damit wird der Einfluss zurückliegender Lösungen gegenüber jüngst gefundenen 

abgeschwächt. Da jüngst erzeugte Lösungen auf mehr Wegerfahrung ihrer Vorgänger 

zurückgreifen, wird so das Suchen einer guten Lösung aus der kollektiven Erfahrung heraus 

gegenüber eher zufällig gefundenen guten Lösungen weiter verstärkt. 

Alle die von der Natur übernommenen Mechanismen können nicht darüber hinwegtäuschen, 

dass es sich bei den Ameisenalgorithmen lediglich um eine Heuristik handelt. Genauso wie 

Ameisen in der Natur zum Teil ihre Straßen nicht immer auf der kürzesten Verbindung 

zwischen Nest und Futterquelle errichten, kann es auch den virtuellen Ameisen ergehen.  

Die größte „Gefahr“ droht dadurch, dass im Laufe des Verfahrensablaufs frühzeitig ein 

einzelner Weg durch das auf ihm abgelegte Pheromon eine so starke Anziehungskraft ausübt, 

dass auch die proportionale Zufallsauswahl keine Variationen in der Wegsuche mehr 

gewährleisten kann. Genauso wie ein Genetischer Algorithmus durch eine Mutation von Zeit 

zu Zeit eine Erneuerung der Varietät im Genpool benötigt,4 muss eine Konvergenz des 

Ameisenalgorithmus hin zu einer suboptimalen Lösung verhindert werden. Aus diesem Grund 

wird häufig entgegen dem Vorbild der Natur ein Ausgleichsmechanismus, der sowohl ein 

Zuviel als auch ein Zuwenig an Pheromon an einzelnen Stellen im Lösungsraum verhindern 

will, verwendet, siehe Dorigo et al. (1999). Je nach Ausprägung des Steuerungsparameters 

0<j<1 wird das Pheromon, immer wenn sie Teil einer Lösung wird, wieder in Richtung der 

Startbelegung t0 angepasst (1.4). 

xjiijij ∈∀⋅+−= ),()1( 0τϕϕττ  (1.4)

Diese Startbelegung mit Pheromon lässt sich anhand des Zielfunktionswertes einer 

heuristischen Lösung F(xheu) mittels Formel (1.5) wiederum für ein Minimierungsproblem 

bestimmen; vgl. etwa Bullnheimer et al. (1999). 

i
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Ein praktischer Nebeneffekt der Ameisenalgorithmen ist es, dass keinesfalls eigens für die 

Bestimmung von F(xheu) eine weitere Heuristik programmiert werden muss. Vernachlässigt 

man das Pheromon und die proportionale Zufallsauswahl, so erfolgt die Wegsuche im 

Lösungsraum myopisch, indem die Variable xi jeweils auf das durch die Prioritätsregel nahe 

gelegte beste j ( ][maxarg ik
Jk

vj
i∈

= ) fixiert wird. Dieses Vorgehen wird von sog. Nearest-

                                                 
4 Zur Konvergenz Genetischer Algorithmen hin zu einem Genotyp siehe Mühlenbein (1997). 
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Neighbor-Heuristiken5, vgl. Domschke und Drexl (1998, S. 120f.), verfolgt. Somit stellt die 

Nearest-Neighbor-Heuristik eine Sonderform des Ameisenalgorithmus mit einer Ameise, Q=1 

in (1.2) und r0œÑ+. Nach dem Durchlaufen einer Iteration des Ameisenalgorithmus mit dieser 

Parameterkonstellation kann dieser Zielfunktionswert in der Formel (1.5) zur Berechnung der 

Startbelegung mit Pheromon verwendet werden. 

3. Anpassung von Ameisenalgorithmen an konkrete 
Optimierungsprobleme 

Um die Idee der Ameisenalgorithmen zum Lösen von konkreten Optimierungsproblemen 

nutzbar zu machen, muss ein Computerprogramm erstellt werden. Dieses besteht primär aus 

zwei Steuerungsroutinen. Die erste veranlasst auf der Ebene der Ameisenkolonie, dass pro 

Iteration jede Ameise einen Weg durch den Lösungsraum konstruiert. Anschließend wird die 

jeweils beste Lösung bestimmt und die Pheromonablage ausgelöst. Dieser Ablauf ist im 

Pseudocode der Abbildung 3 dargestellt. 

F (xheu):= Ergebnis von Ameisenalgorithmus mit Q:=1, 
|A|:=1, r0=1, maximale Iterationszahl:=1 

Pheromon initialisieren nach (1.5) 

while i ≤ maximale Iterationszahl 

for each a œ A 

 a.Wegsuche; (Abb. 4) 

Pheromon abgeben nach (1.3) 

 

i:=i+1 

beste Lösung aller Iterationen und Ameisen zurückgeben 

Abb. 3: Pseudocode für die Koloniesteuerung 

Als zweite elementare Prozedur fungiert die Wegsuche einer jeden Ameise a aus der Menge 

aller Ameisen der Kolonie A. Die Konstruktion einer Lösung durch eine einzelne Ameise 

verdeutlicht der Pseudocode aus Abbildung 4. 

 

 

 

 
                                                 
5 Teilweise werden solche Heuristiken auch mit Best-Fit bezeichnet, vgl. Domschke und Drexl (1998, S. 121). 
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for i:=1 to n 

Menge J i aller möglichen Variablenwerte für xi bestimmen 

ja nein 

msum:=∑jœJi  tij
a nij

b 

r:=rnd, makt:= 0, k:=0 

j:=ktes Element von Ji  

k:=k+1 

 

makt := makt + sum
ijij

µ
ντ βα ⋅

 

until r < makt 

xi:= arg
iJj∈

max [tij
a nij

b]

xi:=j 

 

Pheromon aktualisieren nach (1.4) 

Zielfunktionswert F(x) bestimmen 

Abb. 4: Pseudocode für die Wegsuche einer einzelnen Ameise 

Mit dem so beschriebenen Gerüst kann die Metaheuristik auf konkrete Probleminstanzen 

übertragen werden. Dabei müssen vor allem drei Teile eines Ameisenalgorithmus 

problemspezifisch konkretisiert werden.  

Zunächst gilt es eine geeignete Lösungsrepräsentation für die Menge der Variablen 

abzuleiten, welche der Problemstellung zugrunde liegen. Gilt es etwa beim sog. Travelling 

Salesman Problem (TSP) die kürzeste Route eines Handlungsreisenden durch eine 

vorgegeben Anzahl von n Städten zu bestimmen, so erfolgt die Lösungsrepräsentation durch 

einen Reihenfolgevektor pi mit i = 1,…,n.6 Die Wegsuche einer Ameise kann dann wie bei 

einer realen Wegsuche von Ort zu Ort fortschreiten, bis der Reihenfolgevektor gefüllt ist. Zur 

Auswahl der nächsten Stadt an der Reihenfolgeposition i sind nur noch diejenigen Städte 

erlaubt, die noch nicht besucht wurden. Dementsprechend ist bei der Bestimmung der 

Menge der erlaubten Variablenausprägungen Ji, dieser Sachverhalt zu beachten. Zur 

Auswahl des nächsten Ortes aus der Menge Ji wird dann der Pheromonwert aus (n,n) Matrix 

bestimmt. Diese Matrix hält fest, wie erfolgreich es in der Vergangenheit war die Kante (i,j) 

in eine Tour aufzunehmen. Zusätzliche zum Pheromon wird ein heuristischer Wert 

                                                 
6 Zur Anwendung von Ameisenalgorithmen auf das TSP siehe Dorigo et al. (1991), Dorigo et al. (1996), Dorigo 

und Gambardella (1997), Stützle und Dorigo (1999b), Bullnheimer et al. (1997).  

rnd ≤ Q
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herangezogen, der nur problemspezifisch festgelegt werden kann. Beim TSP ist die 

myopische Information zur Wegsuche der Kehrwert der Entfernung vom aktuellen Standort 

zu dem betrachteten nachfolgenden Ort.  

Neben Reihenfolgeproblemen wie dem TSP stellen Zuordnungsprobleme eine weitere 

grundlegende Problemklasse kombinatorischer Optimierungsprobleme dar, vgl. Ellinger 

(1990, S. 8), Zimmermann (1995, S. 147).7 Beim klassischen Zuordnungsproblem, siehe etwa 

Hansmann (2001, S. 219), geht es darum m Arbeitern m Arbeitsplätzen zuzuordnen. Dabei hat 

jeder Arbeiter eine unterschiedliche Eignung eij für jeden Arbeitsplatz. Insgesamt gilt es, die 

Summe der durch eine Zuordnung realisierten Eignungen zu maximieren. Die Wegsuche 

erfolgt bei dieser Problemstellung, indem sukzessive einem Arbeiter einer der Arbeitsplätze 

zugeordnet wird. Dementsprechend erfolgt die Lösungsrepräsentation in einem Vektor pi 

mit i = 1,…,m, der für jeden Arbeiter i die Nummer des ihm zugeordneten Arbeitsplatzes j œ 

{1,…,m} aufnimmt. Dabei ist leicht ersichtlich das im aktuellen Zuordnungsschritt nur 

diejenigen Arbeitsplätze bei der Bestimmung der Menge der erlaubten 

Variablenausprägungen in der Menge Ji verbleiben dürfen, die noch nicht in einem der 

vorigen Zuordnungsentscheidungen vergeben wurden. Die Pheromonmenge zwischen der 

Variablen i, die einen Arbeiter repräsentiert, und den erlaubten Ausprägungen der Variablen, 

der Nummern der Arbeitsplätze, wird aus einer (m,m) Matrix gelesen. Zusammen mit der 

myopischen Information, die einfach die Eignung eij für den untersuchten Arbeitsplatz 

widerspiegelt, kann durch die Wegsuche jedem Arbeiter ein Arbeitsplatz zugeordnet werden. 

Somit kann durch die problemspezifische Ausgestaltung der drei Elemente: 

• Lösungsrepräsentation 

• Bestimmung der Menge der erlaubten Variablenausprägungen  

• myopischen Information 

zusammen mit den problemunabhängigen Steuerungsroutinen eine leistungsstarke 

Metaheuristik erzeugt werden, wie zahlreiche Implementierungen von Ameisenalgorithmen 

für unterschiedlichste Optimierungsprobleme nahe legen, vgl. Tabelle 1.  

                                                 
7 Aus der Familie der Zuordnungsprobleme wurde z.B. das sog. Quadratic Assignment Problem (QAP) mit 

Ameisenalgorithmen gelöst, vgl. Stützle und Hoss (1998), Stützle und Dorigo (1999a), Gambardella et al. 

(1999b). 
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Problemstellung Fundort 

Travelling Salesman Problem Dorigo et al. (1991), Dorigo et al. (1996), Dorigo und 
Gambardella (1997), Stützle und Dorigo (1999b), Bullnheimer et 
al.(1997) 

Vehicle Routing Problem Bullnheimer et al. (1999), Gambardella et al. (1999a) 

Quadratic Assignment Problem Stützle und Hoss (1998), Stützle und Dorigo (1999a), 
Gambardella et al. (1999b) 

JIT Sequencing Problem McMullen (2001) 

Graph Coloring Costa und Hertz (1997) 

Shortest Common 
Supersequence Problem 

Michel und Middendorf (1999) 

Constraint Satisfaction Problem Roli et al. (2001) 

Sequential Ordering Problem Gambardella und Dorigo (2000) 

Routing in 
Telekommunikationsnetzwerken 

Di Caro und Dorigo (1997), Schoonderwoerd et al. (1997a), 
Schoonderwoerd et al. (1997b), Di Caro und Dorigo (1998) 

Project Scheduling Problem Merkle et al. (2000), Boysen et al. (2002) 

Physikalische Speicherung von 
Daten im Data Warehouse 

Maniezzo et al. (2001) 

Graph Partioning Kuntz und Snyers (1994) 

Scheduling Colorni et al. (1994), Stützle (1998), Merkle und Middendorf 
(2000), Stützle et al. (2000), Gagne et al. (2001), Gagne et al. 
(2002), T’kindt et al. (2002) 

Assembly Line Balancing Bautista und Pereira (2002) 

Zuweisung von 
Radiofrequenzen 

Maniezzo und Carbonaro (2000) 

Portfolio-Selection Maringer (2002) 

Anordnung der Tasten auf einer 
Tastatur 

Eggers et al. (2003) 

Tab. 1: Überblick über die mit Ameisenalgorithmen gelösten Problemstellungen 
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