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Uberblick

Ameisenalgorithmen halten seit ihrer Vorstellung im Jahre 1991 zunehmend Einzug ins Schrifttum
des Operations Research. Dies liegt nicht allein an der originellen Adaption ihres natiirlichen
Vorbilds, sondern vor allem an den viel versprechenden Ergebnissen, welche die Meta-Heuristik
in unterschiedlichen Problemstellungen der kombinatorischen Optimierung liefert. In diesem
Artikel soll die Ubertragung der Futtersuche der Ameisen auf die Optimierung dargestellt werden.
Beginnend mit dem biologischen Vorbild in Abschnitt 1 wird anschlieBend in Abschnitt 2 eine
formale Beschreibung der Ameisenalgorithmen vorgenommen, um im abschlieBenden Abschnitt 3
Hinweise fiir die Anpassung an konkrete Optimierungsprobleme zu liefern.

1. Die ldee

Ameisenalgorithmen beziehen sowohl ihren Namen als auch die sich dahinter verbergende
Idee der Losungssuche aus ihrer Analogie zur Natur. So lieB sich der italienische
Mathematiker Marco Dorigo von der Futtersuche der Ameisen inspirieren, als er 1991 den
Ablauf in  Ameisenkolonien auf die  Losungssuche in  kombinatorischen
Optimierungsproblemen iibertrug, vgl. Schmundt (2000).'

Ameisen orientieren sich bei ihrer Futtersuche mittels eines chemischen Sekrets namens
Pheromon, welches sie wihrend ihrer Fortbewegung laufend aus einer Driise am hinteren Teil
ihres Korpers auf den Boden absondern, vgl. Bonabeau und Meyer (2001). Nachfolgende
Ameisen wihlen, vor die Entscheidung gestellt, in welcher Richtung sie ihren Weg fortsetzen
sollen, mit einer héheren Wahrscheinlichkeit den Weg, auf dem bereits mehr Pheromon
hinterlassen wurde, vgl. Bonabeau et al. (2000). Das Pheromon nimmt damit die Rolle einer
Art kollektiven Gedichtnisses der Kolonie ein, welches die vergangenen Wegentscheidungen
speichert.

Beobachtungen aus der Natur zeigen, dass Ameisen ihre Straflen meist auf direktem Weg
zwischen Nest und Futterquelle errichten. Doch wie ermoglicht nun das Pheromon der
Kolonie als Ganzem, einen kiirzesten Weg zu finden, wozu eine einzelne Ameise mittels ihrer

individuellen Fahigkeiten allein nur zufdllig in der Lage wére. Ameisen machen es sich zu

! Unter den ersten Veréffentlichungen finden sich: Colorni et al. (1991), Dorigo et al. (1991) und Dorigo (1992).
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Nutze, dass kiirzere Wege schneller durchlaufen werden konnen und dementsprechend ihre
Markierung schneller erhalten. Pro Zeiteinheit konnen somit mehr Ameisen den kiirzeren
Weg durchlaufen als einen ldngeren. Ein Mehr an Ameisen bedeutet aber auch, dass
Nachfolger vor die Wahl gestellt mit hoherer Wahrscheinlichkeit den stirker belaufenen und
markierten Weg wéhlen. Dadurch verstérkt sich die Anziehungskraft des kiirzeren Weges im
Zeitablauf immer weiter, bis eine Ameisenstrale auf der anndhernd direkten Verbindung
zwischen Nest und Nahrung entstanden ist.

Diesen Ablauf soll die folgende schematische Wegsuche aus Abbildung 1 verdeutlichen,
deren Ablauf von Biologen mit Experimenten dhnlichen Aufbaus nachgewiesen wurde, siche

hierzu Pasteels et al. (1987), Goss et al. (1989), Deneubourg et al. (1990).
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Abb. 1: Schematischer Ablauf der Futtersuche von Ameisen

Angenommen pro Zeiteinheit starten jeweils zwei Ameisen vom Nest aus, um Nahrung zu
sammeln. Zwischen Ameisenhaufen und Futterquelle befindet sich ein Hindernis, dessen
Umlaufen die Ameisen auf dem lidngeren Weg eine Zeiteinheit kostet und auf dem kiirzeren
lediglich eine halbe. Da die Ameisen die Giite der Wege von ihrer Position aus nicht
tiberschauen konnen und zu Beginn noch keine Ameise die Wege mit Pheromon
gekennzeichnet hat, sei unterstellt, dass ihre Zufallsauswahl die eine Ameise den lingeren und
die andere den kiirzeren Weg beschreiten ldsst. Ist eine Zeiteinheit vergangen und zwei
weitere Ameisen sind vor die Wegentscheidung gestellt, so hat die Ameise, welche den
langeren Weg gewihlt hat, gerade die Futterquelle erreicht, mithin ihren Weg mit einer
Pheromoneinheit markiert. Die andere Ameise hat aber in der einen Zeiteinheit schon den
Weg zuriick ins Nest zurlickgelegt und somit den Weg doppelt markiert. Die nachfolgenden
Ameisen werden nun mit einer hoheren Wahrscheinlichkeit den kiirzeren Weg wihlen, da die
groBBere Pheromonmenge ihre Auswahlentscheidung in diese Richtung beeinflusst. So bildet
sich schon nach kurzer Zeit eine stirkere Priaferenz fiir den kiirzeren Weg heraus, die weiter

verstarkt wird, je mehr Ameisen erfolgreich den kiirzeren Weg beschritten haben.
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Nun ldsst sowohl die Natur als auch ein kombinatorisches Optimierungsproblem den
einzelnen Ameisen wesentlich mehr Freiheitsgrade bei ihrer Wegentscheidung als in dem
Beispiel, so dass die Konvergenz zum kiirzesten Weg bzw. der besten Losung mehr Ameisen

und eine langere Zeit beansprucht; der Mechanismus dahinter bleibt aber der beschriebene.

2. Ubertragung des natiirlichen Vorbilds auf einen
Algorithmus

Artifizielle Ameisen bilden das Verhalten ihrer natiirlichen Vorbilder nach, indem sie die
Variablen einer gesuchten Losung sukzessive analog einer Wegsuche festlegen. Dabei
machen sie die Wahlentscheidung {iber den Wert der aktuell betrachteten Losungsvariablen
abhéngig von der Hohe der Pheromonvariablen, welche die Giite der vorangegangenen
Wabhlentscheidungen zwischen der Losungsvariablen und ihrer moglichen Auspriagungen an
dieser Stelle des Festlegungsprozesses kennzeichnet.
Die kiinstlichen Ameisen orientieren sich aber nicht allein am Pheromon. Zusétzlich wird
ihnen eine Art Sehfdhigkeit attestiert. Bei ihrer Wegentscheidung ziehen sie nicht nur die
Pheromonmenge hinzu, sondern orientieren sich zusétzlich an einer heuristischen
Information, einer Prioritéitsregel. Ubertragen auf die Wegsuche betont eine Priorititsregel
etwa die ndchstgelegene Weggabelung (Kante in einem Netzwerk), vgl. Maniezzo und
Carbonaro (1999).
Nach der Fixierung einer Variablen kennzeichnen auch die artifiziellen Ameisen ihre
getroffene Wegentscheidung fiir die Nachfolger mit Pheromon. Dies geschieht, indem in einer
Matrix eine FlieBkommazahl, die den Pheromonwert an der Verbindung zwischen der
festgelegten Variablen und ihrer gewéhlten Auspriagung aus dem Wertebereich reprisentiert,
proportional zur der Giite der Auswahl manipuliert wird.
Entsprechend dieser Skizzierung der Ubertragung des natiirlichen Vorbilds auf einen
Algorithmus gilt es, folgende drei Hauptelemente niher zu beschreiben:

a) Den Ablauf der sukzessiven Festlegung der Variablen analog zur Wegsuche der

Ameisen,
b) die Regel nach der die Fixierung einer Variablen aus ihrem Wertebereich
entsprechend einer Wegentscheidung erfolgt, und

c) die Markierung der erzeugten Losungen analog der Pheromonablage.
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Formal lisst sich die Wegsuche folgendermaBen darstellen:* Gesucht wird eine Losung x mit
x; (i =1,...,n) Variablen. Da Ameisenalgorithmen flir kombinatorische Optimierungsprobleme
eingesetzt werden, kann jede dieser Variablen eine endliche Anzahl an Auspragungen aus
ihrem Wertebereich annehmen, dargestellt durch die Menge J'. Die Wegsuche der artifiziellen
Ameisen erfolgt nun durch den Losungsraum, indem sukzessive die Variablen x; aus ihren
Wertebereich J' festgelegt werden. Zur Fixierung einer Variablen analog zu einer einzelnen
Wegentscheidung wird jeder mdglichen  Ausprigung der Variablen eine
Auswahlwahrscheinlichkeit P(x;) zugeordnet, die sich aus dem Pheromonwert und der
Prioritétsregel berechnet, siche Formel (1.1). AnschlieBend sorgt eine Monte-Carlo-Auswahl
fiir eine zufallsgestiitzte Wegauswahl proportional zur Auswahlwahrscheinlichkeit.
TR .
P(x;)= — 5 Vi=l,.,n;, jeJ' (1.1)
Zkeﬂ i Vik

Fiir die Festlegung einer Variablen x; aus dem zulidssigen Wertebereich j & J' werden das

Pheromon t; und der Wert einer Prioritétsregel n; der betrachten Wegentscheidung mit den
Auspragungen aller moglichen Alternativen ins Verhiltnis gesetzt. Dabei sind a und b
Gewichtungsfaktoren, welche den Einfluss von Pheromon bzw. heuristischer Information auf
die Wegentscheidung steuern kénnen. Anhand der ermittelten Auswahlwahrscheinlichkeiten
kann anschlieBend eine Monte-Carlo-Auswahl iiber die Festlegung der betrachten Variablen

entscheiden; siche Abb. 2.

mA1 = 654
OA2 = 123
mA3 = 456
mA4 = 321

Abb. 2: Schematische Darstellung der Monte-Carlo Auswahl durch den Ameisenalgorithmus

Zahlreiche Erweiterungen hat die Grundform der Auswahlentscheidung seit ihrem Bestehen
erfahren. Eine der wichtigsten Erweiterungen, die auch ACO® genannt wird, vgl. Dorigo et al.

(1999), wendet im Wechsel neben der Monte-Carlo-Auswahl auch eine Regel an, welche

? Eine weiterfiihrende formale Betrachtung losgeldst von einem konkreten Optimierungsproblem findet sich bei
Birattari et al. (2002).
* Die Abkiirzung ACO steht fiir Ant Colony Optimization.
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immer diejenige Auswahlentscheidung mit dem maximalen Produkt aus Pheromon und
heuristischer Information trifft. Die Steuerung, welche der beiden Auswahlregeln angewendet
wird erfolgt iiber den Vergleich einer gezogenen Zufallszahl 0< rnd <1 mit einem

vorzugebendem Schwellenwert 0<Q<1, wie es Formel (1.2) nahe legt.

wenn rnd > Q : Z P 3 "i=1,..,njeJ
Tie Vi

P(xi') =

' (1.2)

a p
L i=],...nj= argmax [ 7 vy’ |
keJ'
wenn rnd <Q :

0 sonst

Durch diese modifizierte Auswahlregel kann die Suche in der Nachbarschaft von der bis dato
besten gefundenen Losung verstarkt werden.

Neben der Wegsuche ist die Riickmeldung des Erfolgs via Pheromon das wichtigste Element
eines Ameisenalgorithmus. Die Pheromonablage erfolgt allerdings etwas anders als bei ihren
lebendigen Vorbildern. Wahrend dort kiirzere Wege in geringerer Zeit zuriickgelegt werden
und dementsprechend ihre Kennzeichnung schneller erhalten als l&ngere Wege, ist dies am
Computer durch dessen diskrete Natur schwierig abzubilden. Daher erfolgt die Ablage des
kiinstlichen Pheromons dergestalt, dass zunichst alle Ameisen einer Iteration ihren Weg
bestimmen. AnschlieBend wird fiir jede Ameise die Giite der gefundenen Losung bestimmt
und erst jetzt ex post jede in der Gesamtlosung enthaltene Teilentscheidung proportional zur
Losungsgiite mit Pheromon gekennzeichnet. Sind alle n Variablen festgelegt, so liegt eine
Losung x fiir das Ausgangsproblem vor, fiir die wiederum der Zielfunktionswert F(x)
errechnet werden kann. Alle Elemente (i,j) des Losungsraumes, die Teil der Losung x sind,
werden nun in der Pheromonmatrix t entsprechend des Zielfunktionswertes der Losung

gekennzeichnet, siche Formel (1.3) flir ein Minimierungsproblem.

1
;=1,(1-p)+p- ﬁ
0 v(i,J)ex (1.3)

Kﬁ/—/%/—/

Verwitterung Pheromonablage

V(i,J)ex

Die Betonung guter Losungen kann weiter erh6ht werden, indem nicht alle Ameisen fiir die
Pheromonablage berechtigt werden. Abweichend von der Natur kann etwa nur diejenige

max

Ameise mit dem besten Zielfunktionswert (x”“") fiir die Pheromonablage ausgewihlt werden,
vgl. Dorigo et al. (1999). Zusitzlich ist in Formel (1.3) ein ebenfalls an die Natur angelehnter

Verwitterungsfaktor 0<r<l integriert. Wie die Witterungseinfliisse auf eine reale
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Pheromonspur einwirken, schwicht dieser Faktor auch die virtuelle Spur vergangener
Iterationen. Damit wird der Einfluss zuriickliegender Losungen gegeniiber jiingst gefundenen
abgeschwicht. Da jiingst erzeugte Losungen auf mehr Wegerfahrung ihrer Vorgénger
zuriickgreifen, wird so das Suchen einer guten Losung aus der kollektiven Erfahrung heraus
gegeniiber eher zufillig gefundenen guten Losungen weiter verstérkt.

Alle die von der Natur iibernommenen Mechanismen konnen nicht dariiber hinwegtduschen,
dass es sich bei den Ameisenalgorithmen lediglich um eine Heuristik handelt. Genauso wie
Ameisen in der Natur zum Teil ihre Straen nicht immer auf der kiirzesten Verbindung
zwischen Nest und Futterquelle errichten, kann es auch den virtuellen Ameisen ergehen.

Die grofite ,,Gefahr* droht dadurch, dass im Laufe des Verfahrensablaufs friihzeitig ein
einzelner Weg durch das auf ihm abgelegte Pheromon eine so starke Anziehungskraft ausiibt,
dass auch die proportionale Zufallsauswahl keine Variationen in der Wegsuche mehr
gewihrleisten kann. Genauso wie ein Genetischer Algorithmus durch eine Mutation von Zeit
zu Zeit eine Erneuerung der Varietit im Genpool benétigt,” muss eine Konvergenz des
Ameisenalgorithmus hin zu einer suboptimalen Losung verhindert werden. Aus diesem Grund
wird héufig entgegen dem Vorbild der Natur ein Ausgleichsmechanismus, der sowohl ein
Zuviel als auch ein Zuwenig an Pheromon an einzelnen Stellen im Losungsraum verhindern
will, verwendet, siche Dorigo et al. (1999). Je nach Ausprigung des Steuerungsparameters
0<j<1 wird das Pheromon, immer wenn sie Teil einer Losung wird, wieder in Richtung der

Startbelegung t, angepasst (1.4).
oy =1,(l-9)+- 1 V(/,))ex (1.4)

Diese Startbelegung mit Pheromon Idsst sich anhand des Zielfunktionswertes einer

heu

heuristischen Losung F(x™") mittels Formel (1.5) wiederum fiir ein Minimierungsproblem

bestimmen; vgl. etwa Bullnheimer et al. (1999).

1

:m Vi=1,.,n jel (1.5)

To

Ein praktischer Nebeneffekt der Ameisenalgorithmen ist es, dass keinesfalls eigens filir die
Bestimmung von F(x"*) eine weitere Heuristik programmiert werden muss. Vernachlissigt
man das Pheromon und die proportionale Zufallsauswahl, so erfolgt die Wegsuche im
Losungsraum myopisch, indem die Variable x; jeweils auf das durch die Prioritétsregel nahe

gelegte beste j (7 =argmax[v,]) fixiert wird. Dieses Vorgehen wird von sog. Nearest-
keJ’

* Zur Konvergenz Genetischer Algorithmen hin zu einem Genotyp siehe Miihlenbein (1997).
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Neighbor-Heuristiken®, vgl. Domschke und Drexl (1998, S. 120f.), verfolgt. Somit stellt die
Nearest-Neighbor-Heuristik eine Sonderform des Ameisenalgorithmus mit einer Ameise, O=1
in (1.2) und ro@N". Nach dem Durchlaufen einer Iteration des Ameisenalgorithmus mit dieser
Parameterkonstellation kann dieser Zielfunktionswert in der Formel (1.5) zur Berechnung der

Startbelegung mit Pheromon verwendet werden.

3. Anpassung von Ameisenalgorithmen an konkrete
Optimierungsprobleme

Um die Idee der Ameisenalgorithmen zum Ldsen von konkreten Optimierungsproblemen
nutzbar zu machen, muss ein Computerprogramm erstellt werden. Dieses besteht primér aus
zwel Steuerungsroutinen. Die erste veranlasst auf der Ebene der Ameisenkolonie, dass pro
Iteration jede Ameise einen Weg durch den Losungsraum konstruiert. Anschlieend wird die
jeweils beste Losung bestimmt und die Pheromonablage ausgelost. Dieser Ablauf ist im

Pseudocode der Abbildung 3 dargestellt.

F (xX™):= Ergebnis von Ameisenalgorithmus mit Q:=1,
|A]:=1, rp=1, maximale Iterationszahl:=1

Pheromon initialisieren nach (1.5)

while i £ maximale Iterationszahl

foreacha e A

a.Wegsuche; (Abb. 4)

Pheromon abgeben nach (1.3)

ir=i+1

beste Losung aller Iterationen und Ameisen zuriickgeben

Abb. 3: Pseudocode fiir die Koloniesteuerung

Als zweite elementare Prozedur fungiert die Wegsuche einer jeden Ameise a aus der Menge
aller Ameisen der Kolonie 4. Die Konstruktion einer Losung durch eine einzelne Ameise

verdeutlicht der Pseudocode aus Abbildung 4.

> Teilweise werden solche Heuristiken auch mit Best-Fit bezeichnet, vgl. Domschke und Drexl (1998, S. 121).
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fori:=1ton

Menge ]’ aller mdglichen Variablenwerte fiir x; bestimmen

. < .
ja md < Q nein
sum. _ an b
xi:= argmax [t2n”] | M =2 by Ny
jeJ'
r:=rnd, m*%= 0, k:=0
j:=k's Element von J'
k:=k+1
a B
makt — makt+ J wmlj
7
until r < m?
Xi: =]

Pheromon aktualisieren nach (1.4)

Zielfunktionswert F(x) bestimmen

Abb. 4: Pseudocode fiir die Wegsuche einer einzelnen Ameise

Mit dem so beschriebenen Geriist kann die Metaheuristik auf konkrete Probleminstanzen
libertragen werden. Dabei miissen vor allem drei Teile eines Ameisenalgorithmus
problemspezifisch konkretisiert werden.

Zunichst gilt es eine geeignete Losungsreprisentation fiir die Menge der Variablen
abzuleiten, welche der Problemstellung zugrunde liegen. Gilt es etwa beim sog. Travelling
Salesman Problem (TSP) die kiirzeste Route eines Handlungsreisenden durch eine
vorgegeben Anzahl von n Stidten zu bestimmen, so erfolgt die Losungsreprisentation durch
einen Reihenfolgevektor p; mit i = 1,...,n.° Die Wegsuche einer Ameise kann dann wie bei
einer realen Wegsuche von Ort zu Ort fortschreiten, bis der Reihenfolgevektor gefiillt ist. Zur
Auswahl der niachsten Stadt an der Reihenfolgeposition i sind nur noch diejenigen Stidte
erlaubt, die noch nicht besucht wurden. Dementsprechend ist bei der Bestimmung der
Menge der erlaubten Variablenausprigungen J, dieser Sachverhalt zu beachten. Zur
Auswahl des nichsten Ortes aus der Menge J' wird dann der Pheromonwert aus (1,n) Matrix
bestimmt. Diese Matrix hélt fest, wie erfolgreich es in der Vergangenheit war die Kante (i,j)

in eine Tour aufzunehmen. Zusitzliche zum Pheromon wird ein heuristischer Wert

6 Zur Anwendung von Ameisenalgorithmen auf das TSP siehe Dorigo et al. (1991), Dorigo et al. (1996), Dorigo
und Gambardella (1997), Stiitzle und Dorigo (1999b), Bullnheimer et al. (1997).
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herangezogen, der nur problemspezifisch festgelegt werden kann. Beim TSP ist die
myopische Information zur Wegsuche der Kehrwert der Entfernung vom aktuellen Standort
zu dem betrachteten nachfolgenden Ort.
Neben Reihenfolgeproblemen wie dem TSP stellen Zuordnungsprobleme eine weitere
grundlegende Problemklasse kombinatorischer Optimierungsprobleme dar, vgl. Ellinger
(1990, S. 8), Zimmermann (1995, S. 147).” Beim klassischen Zuordnungsproblem, siche etwa
Hansmann (2001, S. 219), geht es darum m Arbeitern m Arbeitspldtzen zuzuordnen. Dabei hat
jeder Arbeiter eine unterschiedliche Eignung e;; fiir jeden Arbeitsplatz. Insgesamt gilt es, die
Summe der durch eine Zuordnung realisierten Eignungen zu maximieren. Die Wegsuche
erfolgt bei dieser Problemstellung, indem sukzessive einem Arbeiter einer der Arbeitsplitze
zugeordnet wird. Dementsprechend erfolgt die Losungsreprisentation in einem Vektor p;
mit i = 1,...,m, der fiir jeden Arbeiter i die Nummer des ihm zugeordneten Arbeitsplatzes j e
{1,...,m} aufnimmt. Dabei ist leicht ersichtlich das im aktuellen Zuordnungsschritt nur
diejenigen  Arbeitspldtze bei der Bestimmung der Menge der erlaubten
Variablenauspriigungen in der Menge J' verbleiben diirfen, die noch nicht in einem der
vorigen Zuordnungsentscheidungen vergeben wurden. Die Pheromonmenge zwischen der
Variablen i, die einen Arbeiter repriasentiert, und den erlaubten Auspriagungen der Variablen,
der Nummern der Arbeitsplitze, wird aus einer (m,m) Matrix gelesen. Zusammen mit der
myopischen Information, die einfach die Eignung e; fiir den untersuchten Arbeitsplatz
widerspiegelt, kann durch die Wegsuche jedem Arbeiter ein Arbeitsplatz zugeordnet werden.
Somit kann durch die problemspezifische Ausgestaltung der drei Elemente:

e LOsungsreprisentation

e Bestimmung der Menge der erlaubten Variablenauspriagungen

e myopischen Information
zusammen mit den problemunabhingigen Steuerungsroutinen eine leistungsstarke
Metaheuristik erzeugt werden, wie zahlreiche Implementierungen von Ameisenalgorithmen

fiir unterschiedlichste Optimierungsprobleme nahe legen, vgl. Tabelle 1.

" Aus der Familie der Zuordnungsprobleme wurde z.B. das sog. Quadratic Assignment Problem (QAP) mit
Ameisenalgorithmen gelost, vgl. Stiitzle und Hoss (1998), Stiitzle und Dorigo (1999a), Gambardella et al.
(1999b).
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Problemstellung Fundort

Travelling Salesman Problem Dorigo et al. (1991), Dorigo et al. (1996), Dorigo und
Gambardella (1997), Stiitzle und Dorigo (1999b), Bullnheimer et
al.(1997)

Vehicle Routing Problem Bullnheimer et al. (1999), Gambardella et al. (1999a)

Quadratic Assignment Problem | Stiitzle und Hoss (1998), Stiitzle und Dorigo (1999a),
Gambardella et al. (1999b)

JIT Sequencing Problem McMullen (2001)
Graph Coloring Costa und Hertz (1997)
Shortest Common Michel und Middendorf (1999)

Supersequence Problem

Constraint Satisfaction Problem | Roli et al. (2001)

Sequential Ordering Problem Gambardella und Dorigo (2000)

Routing in Di Caro und Dorigo (1997), Schoonderwoerd et al. (1997a),
Telekommunikationsnetzwerken | Schoonderwoerd et al. (1997b), Di Caro und Dorigo (1998)
Project Scheduling Problem Merkle et al. (2000), Boysen et al. (2002)

Physikalische Speicherung von | Maniezzo et al. (2001)
Daten im Data Warehouse

Graph Partioning Kuntz und Snyers (1994)

Scheduling Colorni et al. (1994), Stiitzle (1998), Merkle und Middendorf
(2000), Stiitzle et al. (2000), Gagne et al. (2001), Gagne et al.
(2002), T’kindt et al. (2002)

Assembly Line Balancing Bautista und Pereira (2002)
Zuweisung von Maniezzo und Carbonaro (2000)
Radiofrequenzen

Portfolio-Selection Maringer (2002)

Anordnung der Tasten auf einer | Eggers et al. (2003)
Tastatur

Tab. 1: Uberblick iiber die mit Ameisenalgorithmen geldsten Problemstellungen
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